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ABSTRACT
We discuss the Gamma Lévy process, including path properties, the inverse process,
integrability, and its spin-offs obtained by compounding, exponentiation, and other
operations; further extendable to arbitrary sigma-finite continuous Borel spaces. An
appendix on modular spaces and deterministic jump processes is included.
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Preamble

A stochastic process (Xt; t ∈ R) entails algebraically the obvious integral Xf :=∫
f dX for interval-based simple functions; first with deterministic, then with ran-

dom values. Extensions require an adequate structure of the process. Origins of such
approach can be traced back to [20] and its temporaries.

A thorough description of arising “integrable functions” is one of the primary tasks.
E.g., cf. [9], for a Lévy process, a derived random measure X1IA would allow simple
functions beyond just intervals, then deterministic integrands that form a modular F-
space (metric, complete, translation invariant). The three components (deterministic,
diffusive, and Poissonian) jointly entail a rather sophisticated metric (cf. [9, Th. 8.3.1]).

The diffusive part essentially falls into the Hilbertian theory but the diffusion-free
part alone has its own specific impact often clouded and dominated by the present dif-
fusion. In contrast, the study [8] of pure Poissonian integrals was confined to positive,
centered, or symmetric pure jump processes. A domain T ⊆ R+ with the Lebesgue
measure λ suffices to derive an exact analysis of existence, convergence, or divergence; a
blueprint ready to be transferable to more general Borel spaces (L,L, λ) with atomless
σ-finite Borel measures λ such as the Lebesgue measure on Rd.

In contrast to general treatises on Lévy process such as [2, 8, 16], etc., where par-
ticular processes serve merely as illustrations of the theory, we study the Gamma
processes in detail, sort of like “laboratory white mice”. Also for that reason we use
the unit intensity λ = 1 to avoid an unnecessary clutter; a non-unit intensity can be
reinserted back if so desired. Yet, we mark features and characteristics that can be
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either extended to general Lévy process or are applicable to other specific cases such as
stable processes. However, the Gamma process admits characteristics that are absent
in many Lévy process, e.g., moments of arbitrary order which, in turn, prompts for a
study of their asymptotic behavior.

The first section recalls the Gamma process that generalizes arrival moments Sn in
a Poisson process interpreted as a process of fractional signals on [0,∞), expanding
the blueprint from [8]. We note a connection to Thorin’s GGC (Generalized Gamma
Convolutions) (cf. [3, 4, 6, 14, 19] and numerous references therein); however, positive
Gamma integrals were considered there as individual entities rather than values of a
function-indexed stochastic process. Gamma process may be composed at jumps with
independent “rewards”, including Bernoulli random variables that in the symmetric
case entails a symmetric Gamma process.

The second section describes paths and p-moments and adds hyper-exponential
moments of the inverse Gamma process; the appendix contains a primer of modular
space augmented by basic deterministic calculus of jumps.

Following the typography of [8], for a general domain (L,L, λ) we utilize the “oper-
ator notation” for integrals, e.g., λf1IT =

∫
T f dλ or ST f =

∫
T f dS, T ∈ L. We may

skip the subscript when the set is the entire space.

When L = [0,∞) we specify λ as the Lebesgue measure and with the linear order

we further abbreviate λtf =
∫ t
0 f(x) dx and similarly Stf =

∫ t
0 f dS, etc.

1. The Gamma integral

1.1. Distributional approach

The standard procedure leading to the so called “stochastic integral” is quite simple
due to the specificity of the Gamma distribution. That is, the densities and Laplace
transforms

ft(x) =
xt−1

Γ(t)
e−x, x > 0, Lt(θ) =

1

(1 + θ)t
= e−t ln(1+θ), t, θ > 0

yield finite dimensional distributions which by the Kolmogorov Consistency Theorem
ensure the existence of a Lévy process St on (0,∞) with independent and stationary
increments, augmented by S0 = 0. For a real function f ≥ 0 on R+, the following func-
tion L(θ) is a Laplace transform of some probability measure that may be represented
by a single random variable denoted, say, by Sf :

L(θ) := e−λ ln(1+θf) =: Ee−θSf . (1)

The passage from an“entity”, i,e., a single random variable Sf marked by f , to the
linear process Sf requires some additional arguments. Then the variable θ becomes
obsolete because it is built in the integrand. Alternatively, we may utilize the Fourier
transform

F (θ) := EeıθSf = exp

{
−1

2
λ(1 + θ2f2) + ı λ arctan(θf)

}
, (2)
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which stems from the Lévy-Khinchin representation.

The probability distribution of Sf is well defined on an arbitrary (L,L, λ), not
just on the real half-line. Hence, we may consider the product space (L′,L′, λ′) :=
(K,K, κ) ⊗ (L,L, λ). For example, consider a probability distribution κ of a random

variable K. The forthcoming Fourier transform describes first a random entity S
(κ)
f ,

then the linear stochastic “compound” or “reward” process S(κ)f (see also (9) below).
Factually, there is no need to restrict κ to be only a probability measure; it could be
any measure satisfying the underlying integrability conditions.

In the simplest case, for a (±1)-Bernoulli K(β), i.e., P(K = 1) = α ∈ [0, 1] and

β := EK = 2α− 1 ∈ [−1, 1], we obtain a random entity S
(β)
f :

F (κ)(θ) := EeıθS
(κ)
f = exp

{
−1

2λE (1 + θ2f2) + ı λE arctan(θKf)
}

F (β)(θ) := EeıθS
(β)
f = exp

{
−1

2λ(1 + θ2f2) + ı βλ arctan(θf)
} (3)

where the upper mark “(β)” represents just the parameter of the Bernoulli distribution;

e.g., in the symmetric case reduced to S̃t := S(0) which also may be represented as
St/2 − S′

t/2 with an independent subtrahend.

In such approach the stochastic process St is first acquired only on R+. Then indeed
it yields a linear stochastic process Sf := Sf , well defined on the set S of step
functions; and consequently,

Sf =

∫ ∞

0
f dSt, f ∈ S .

Again, there is no need to specify the scalar θ. The range S(S ) is a vector subspace
of L0(Ω). In view of the exponent, the set of step functions is dense in the modular
metric space Lϕ1(R+) (cf. App. A.1).

It remains to see that the closure in L0 (i.e., in probability) of the core range
corresponds to the whole Lϕ1 , or to Lϕ2 in the latter case. We will use the following
Chebyshev’s style inequality, involving just a single random variable Sf rather than
the process Sf .

Proposition 1. For a positive ϵ ≤ 1
2 and f ∈ S ,

P
(
|S(β)

f | > ϵ
)
≤

{
3
ϵ ϕ1(f), if β ̸= 0;

1
ϵ ϕ2(f), if β = 0.

Proof. Put X = S
(β)
f . We apply the estimate (cf. [7, Lemma 5.1(1)],

c(ϵ) := P(|X| > ϵ) ≤ ϵ

2

∫ 1/ϵ

−1/ϵ

∣∣∣1− EeıθX
∣∣∣ dθ.

Writing A + ı B for the exponent and computing the modulus in the integrand with

3
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x = cosB and y = e−A,

(
1− 2xy + y2

)1/2 ≤ (
(1− y)2 + 2(1− x)

)1/2 ≤ A+ |B|.

Both even functions, increasing on R+, are bounded by their end values. With r = 1/ϵ,
we consider

sup
x

ϕ′
2(rx)

ϕ′
1(x)

and sup
x

ϕ′
0(rx)

ϕ′
1(x)

.

So,

r2(x+ x2)

1 + r2x2
= r

rx

1 + r2x2
+

(rx)2

1 + r2x2
≤ r

2 + 1 ≤ r;

r(1 + x)

1 + r2x2
= r

1

1 + r2x2
+

rx

1 + r2x2
≤ r + 1

2 ≤ 3r
2

and adding when β ̸= 0: r + 3r
2 ≤ 3r.

Let us remind that thus far Sf has been well defined only for step functions on R+.

Theorem 1.1. On R+, the linear stochastic integral S(β)f is well defined on Lϕ
1 when

β ̸= 0 and on Lϕ2 when β = 0.

Proof. In both cases the closure argument is identical, so consider either Lϕ. For
f ∈ Lϕ there exists a sequence fn of step functions such that fn → f in Lϕ, i.e.,
fn is Cauchy. By the above Proposition, Sfn is Cauchy in L0 and thus converges to
some random variable Y . We define then Xf := Y , thus extending the linear integral
operator onto the whole Lϕ. By continuity, the Fourier transform of Sf is given by
(2).

Conversely, if Y = limn Sfn in probability then the convergence of the ch.fs. in
view of (2) makes fn Cauchy in Lϕ, so by its completeness fn → f in Lϕ. Again, (2)
identifies the ch.f. of Y .

Such “existential” argument makes the stochastic integral quite enigmatic.

1.2. Atomic approach

The very Lévy-Khinchin representation of such Lévy process Xt sheds some light on
these formulas. We set aside a more general deterministic trend of bounded variation
as well as a diffusion because they may overwhelm or even trash the effect of pure
random jumps. Yet, we allow a possible delicate linear drift. Namely,

lnE exp {iθXt} = t

(
iδθ +

∫

R

(
eiθx − 1− i θ [[x]]

)
ν(dx)

)

where ν is an atomless Lévy measure and [[x]] is any measurable bounded function
such that |[[x]]− x| = O(x2) near 0. Standardly, [[x]] = x/(1 + x2), or [[x]] = x1I{|x|≤1},
or [[x]] = sign(x) (|x| ∧ 1). Some special choices may fit specific distributions, though.
For example, Zolotarev [21, Intr. Thm. A]) broke these standards with a nonstandard
[[x]] = sinx which entailed a commonly accepted new standard representation of the
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stable ch.f. Variations that are caused by choices of [[x]] can be simply incorporated
in the shift parameter δ. It happens for the Gamma process because [[x]], being dν-
integrable itself, can be replaced just by 0.

We will consider shifts separately. The Lévy measure of the Gamma process can be
expressed in terms of the exponential-integral function

E1(v) =

∫ ∞

v
e−x dx

x
=

∫ ∞

1
e−vx dx

x
(4)

with the density e1(x) = e−x/x, x > 0.

The function has appeared independently in a variety of science applications. For
example, in [13] a suitably scaled increment E1(a v

2)−E1(a v
2
∞) describes the motion

of a single meteoroid with reference to its atmospheric and preatmospheric velocities
v and v∞ (an algorithm for the inverse function was crucial).

Indeed, for Φ1(|f |) < ∞, the identities confirm formulas (1) and (2)

∫ ∞

0

(
1− e−θu

)
e1(u) du = ln(1 + θ)

∫ ∞

0

(
1− eıθu

)
e1(u) du = 1

2 ln(1 + θ2)− i arctan(θ)

(the latter terms is just ln(1 − ı θ)). Still, at this stage the existence of the integral
process requires the consistency theorem.

In contrast, we can utilize a deterministic calculus of jumps (cf. App. A.2). The
integral (random, of course) emerges directly even on a quite arbitrary measure space
and the random measure S1IA or process emerge unequivocally merely as by-products
rather than an essence.

We still employ the arrivals (Sn) of a unit intensity Poisson process on [0,∞). Let
Un be independent copies of random element U with values in (L,L, λ) with a strictly
positive density p(u). Also, let (Un) be independent of (Sn). For example, partitioning
L into the union of disjoint subsets Tn with λTn = 1, and introducing the probability
measure

µ =
∑
n

λ(Tn ∩ ·)pn, where
∑
n

pn = 1, (5)

we define U as the identity from (L,L, µ) to (L,L, λ).

The inverse function H = E−1
1 entails the atoms Hn and then the “H-series”:

Sf =
∑
n

Hnf(Un), where Hn = H (Sn p(Un)) , (6)

assumming the a.s. summability. The integrand-indexed process emerges first and only
then it entails the stochastic process and the random measure as by-products:

St =
∑
n

Hn1I{Un≤t}, SA =
∑
n

Hn1I{Un∈A}. (7)

5
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Straightforward computations confirm (1) and (2) even for a general (L,L, λ).

Based on [8], we delineate a justification for the Gamma process on [0, 1], extended
later to its quadratic variation. The display is more transparent than a similar one
for the domain [0,∞) which is just more elaborate. (One may need to switch to the
Fourier transform if necessary.) Indeed, let U be a uniform random variable on [0, 1].
By Fubini’s theorem

Ee−Sf = ES

∏
n

EUe
−H(Sn)f(U).

Defining the function ψ(x) by the formula

e−ψ(x) = Ee−H(x)f(U),

we can use the standard Poisson process Nt:

Ee−Sf = Ee−
∑

n ψ(Sn) = Ee−Nψ = exp

{
−
∫ ∞

0

(
1− e−ψ(x)

)
dx

}
.

That is,

Ee−Sf = exp

{
−E

∫ ∞

0

(
1− e−H(x)f(U)

)
dx

}
. (8)

Note 1.1. The argument works for any positive pure jump Lévy process.

Specifically, for the Gamma process with H being the inverse of ν(x,∞) having the
density e−x/x, the substitution y = H(x) or x = ν(y,∞) in (8) yields

Ee−Sf = exp {−λln(1 + f)} .

Now, the compounding, captured earlier by the transform (3), receives the a.s. repre-
sentation for any admissible measure space L,L, λ):

S(κ)f :=
∑
n

KnHnf(Un) (9)

with independent copies Kn of a random variable K (cf. App. (A.2.4)).

With H(x) = x−1/α, the formulas are known as the LePage representations of an
α-stable integral or process [10] (positive for α < 1 or compounded with random signs
in the symmetric case). The H-series (6) for a general pure jump Lévy process on
an arbitrary continuous σ-finite measure space appeared in [16] where even earlier
references can be tracked down.

Alternatively but specifically on L = R+, we may first define St on [0, 1] using (6)
with p = 1I[0,1]; just using independent copies of a uniform random variable U : next,

with independent copies S
(n)
t , t ∈ [0, 1] at hand, we may define inductively

Sn := Sn−1 + S
(n)
1 , then Sn+t := Sn + S

(n+1)
t , n = 1, 2, ..., t ∈ (0, 1].

6
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Now, in view of Note 1.1 and a comment below (A.2.4), we look at the quadratic

variation [S]f =
∑

nH
2(Sn)f

2(Un) = [S̃]f . The proposed probabilistic form may offer
more translucency than a coarse special function.

Theorem 1.2. The integrable function with respect to the quadratic variation [S] on
T ⊂ R+ (or any σ-finite measure space) form the modular space

{
f : E

∫

T
ln(1 + 2S1/2f

2(x)) dx < ∞
}
.

Proof. W.l.o.g. we may and do assume that T = [0, 1]. In view of (8) we need to
evaluate the following integrals:

∫ ∞

0

(
1− e−H2(x)θ2

)
dx =

∫ ∞

0

(
1− e−x2θ2

) e−x

x
dx. (10)

In the associated Laplace transform a standard Gaussian random variable Z clarifies

the appearance since Z2 D
= S1/2. With θ := f(U),

∫ ∞

0

1− e−x2

x
e−x/θ dx = E

∫ ∞

0

1− eı
√
2xZ

x
e−x/θ dx

= E
∫ ∞

0

1− cos(
√
2xZ)

x
e−x/θ dx

= E
∫ ∞

0

1− cosx

x
e−sx dx

(
with s = (

√
2 θZ)−1

)

=
1

2
E ln(1 + s−2) =

1

2
E ln(1 + 2θ2Z2),

concluding the computations.

1.3. Thorin GGC class

Thorin’s “generalized gamma convolutions” [19], or GGC, are members of the smallest
class T (R+) of probability distributions spanned by Gamma distributions and closed
under convolution and weak limit. In [3] the concept was extended to T (Rd). In our
context, the integrals Sf of positive simple functions serve as a generator of the Thorin
class. Apparently, the class contains constants, obtained, e.g., from the Law of Large
Numbers, which are not representable by integrals.

Setting degenerate distributions aside, the logarithm of the Laplace transform of a
Thorin’s GGC has the representation

ln µ̃(θ) = −
∫ ∞

0

(
1− e−θx

)
ν(dx),

∫ ∞

0
(1 ∧ x) ν(dx) < ∞.

Also, ν(dx) =
k(x)

x
dx with a completely monotonic k(x), i.e., for all nonnegative in-

tegers n, (−1)nk(n)(x) ≥ 0. In particular, by Bernstein Theorem, k(x) is the Laplace
transform of a σ-finite measure on R+, called Thorin measure. The following equiva-
lence is well known (e.g., [6, Prop. 1.1] with references to earlier sources.)

7
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Theorem 1.3. The probability distributions of Gamma entities Sf coincide with non-
degenerate Thorin GGC.

Proof. By construction, the law of Sf belongs to the Thorin class. Let us find its
characteristics. W.l.o.g. we assume that T = [0, 1].

Replace f by θf in formula (8), then substitute y = H(x)f(U), yielding

lnEe−θξLf = −
∫ ∞

0

(
1− e−θy

) k(y)

y
dy, where k(y) = E exp {−y/f(U)} .

Clearly, k(y) is completely monotonic and k(y) = σ̃, where σ = σf the probability
distribution of 1/f(U).

Conversely, a Borel probability (w.l.o.g.) measure σ with c.d.f. G(x) defines the
function f(u) = G−1(u), u ∈ [0, 1]. Then, reversing the above steps, we infer that the
law of Sf is Thorin’s GGC with Thorin measure σ.

The difference between an “entity” marked by a function or scalar and a “stochastic
process” can be illustrated by the following examples.

Example 1. The radical of a positive Gamma process may serve as a random time
replacement, although flawed because it that lacks independent stationary increments),
in a scaled Wiener process; producing one-dimensional distributions:

L
(
S̃t

)
= L

(√
2W

(
S
1/2
t/2

))

for each single nonnegative t but the processes are not equidistributed. In contrast,
the independent (proper) subordinator St yields the Lévy process process W ◦ S.

EeiθW (St) = E
(
(1 + θ2Z2/2)−t

)
, where Z ∼ N(0,1).

Its paths are almost everywhere discontinuous.

Example 2. Let α ∈ (0, 2) and f(x) = x−1/α, x > 0. Then the “entity” Sf := Sf is

a positive α-stable random variable for α > 1 and S̃f := S̃f is symmetric α-stable for
α < 2. Indeed, just compute the Laplace or Fourier transforms. Yet, these “frozen”
values of the Gamma integral processes have nothing in common with the Lévy stable
processes or integrals, except for these solitary coincidences.

A survey of the ample GGC class can be checked in [6] along with references therein.
The reward Gamma processes (9) appear also there under the name “subordinators
St(G)” (processes, not single entities); the only difference being K = 1

G (see [6, (50)
and next]). Since only positive Gamma process and positive integrands are used, and
we consider G ≥ 0, we convert (3) to the Laplace transform and perform some calculus
on R+, using just the logarithm and t = 1; with the probability distribution ν of G:

E
∫ ∞

0
ln

(
1 +

f(x)

G

)
dx =

∫ ∞

0

∫ ∞

0
ln

(
1 +

f(x)

u

)
dx ν(du)

8
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2. Paths and integrability

2.1. Jumps

While every Lévy process has a rcll version, the pointwise representation (7) is rcll
by a deterministic argument (cf. Appendix A.2). However, no path-continuous version
exists since St − t is a martingale of finite variation with all finite p-moments, p > 0.

Theorem 2.1. The paths of St are right-Lipschitz. That is, for every a > 0 there is
a random quantity Ka, although nonintegrable, such that

0 ≤ St − Sa ≤ Ka (t− a), t > a.

The following identity holds even in a more general context (cf., e.g. [15, Lemma
3.3.1]).

Lemma 2.1.1. E [Saf |Sc] = (λaf)
Sc

c
0 ≤ a ≤ c.

Proof. Indeed, points Pn = {kc/n : k = 1, . . . , n− 1} generate a uniform partition of
the interval [0, c]. The random variables Skc/n −S(k−1)c/n are exchangeable condition-
ally, given Sc. Hence, for a ∈ Pn,

E[Sa|Sc] =
a

c
Sc,

extending to any a by the right continuity, and then to integrals by routine.

Proof. of Theorem 2.1. Consequently for a fixed a ≥ 0 we obtain the reverse
martingale

ηt =
St − Sa

t− a
, t > a,

with respect to the descending filtration Rt = σ {Sb − Sa : b ≥ t}. It converges a.s. as
t → a since it is bounded in L1. By the Kolmogorov 0-1 Law, the limit is a non-random
constant which is 0 due to its Laplace transform. Thus, Ka := supt>a |ηt| < ∞ a.s. but
EKa = ∞ since otherwise the reverse martingale ηt would be closed but it is not.

Let us consider now the inverse process R := S−1, cf. (A.2.7), with paths illustrated
by truncated series as in Section 2.3. The cut-off already suggests the continuity of
paths and a sort of possible “explosion” which prompts the computation of suitable
measures such as the hyper-exponential moments ERθRt

t , indeed exhibiting a sort of
growth phase transition at t = 1/e from “fast” to “hyper-fast”.

Theorem 2.2. Let R = S−1.

(1) Almost all paths of Rt are continuous.

(2) ERθRt

t < ∞ for θ < 1 and t > 0; so, the exponential moments EeθRt exist.

(3) ERRt

t < ∞ iff t < 1
e .

Proof. For the continuity see Appendix Note A.3.

Next, applying the identity Eϕ(Y ) = ϕ(0) +
∫∞
0 ϕ′(x)P(Y > x) dx to the function

9
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Figure 1. The range is truncated by 1.

ϕ(x) = xθx with 00 := 1,

ERθR − 1 = θ

∫ ∞

0
(1 + lnx)xθx P(R > x) dx = θ

∫ ∞

0
(1 + lnx)xxP(S(x) ≤ t) dx

It suffices to truncate the integral using an arbitrary large lower limit, i.e., integrating
over [c,∞). For a fixed f we also have

P(S(x) ≤ t) =
1

Γ(x)

∫ t

0
ux−1e−u du ≈ tx

Γ(1 + x)
.

Thus, by Stirling’s formula,

ERθR ≈
∫ ∞

c
exp

{
(θ − 1)x lnx+ x (ln t+ 1)− 1

2
lnx+ ln lnx

}
dx,

proving the last two statements.

2.2. Moments

As usual, ∥X∥p or ∥f∥p denote the p-norms or p-F-norms (when p < 1).

From (2) we infer that X = Sf1I{|f |≤c} possesses the exponential moments EeθX
whenever |θ| < 1/c for any c > 0, so all moments E|X|p exist. On the other hand,
λ{|f | > c} < ∞. Therefore, in studying the moments of Sf it suffices to confine to
f with a support T of finite measure. Furthermore, we may have to relinquish some
hard analysis (that is, close estimates of suitable constants). The connection between

10
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the differentiability (quite straightforward in our case) of the characteristic function
and moments is well known (cf. [11, Sect. 2.3]) as well as are the difficulties related to
odd absolute moments; and all the more, to general non-integer p-moments.

For illustration, we observe that E(Sf) = λf for f ≥ 0 and it stands to reason to
believe that the identity holds for a general f . However, the mere existence of the mean
E|Sf | requires a proof of integrability of f . Although the ch.f. of |Sg| can be expressed
[11, (2.3.11)] in terms of the derivative F ′ of the ch.f. of Sf , but a derivation of the
integrability, λ|f | < ∞, seems very difficult. We will show details in a more general
context.

Theorem 2.3. Let p > 0 and Sf exist for f ∈ L0(L,L, λ).
Let | supp f | < ∞. Then there exist positive constants c, C such that

c||f ||p ≤ ||Sf ||p ≤ C||f ||p.

Consequently, E|Sf |p < ∞ if and only if for any or some c, c′ > 0,

(a) λ|f | 1I{|f |≤c} < ∞ and (b) λ|f |p1I{|f |>c′} < ∞. (11)

We need a few auxiliary results, all under the assumptions of the theorem.

Lemma 2.3.1. E
∣∣Sf1I{|f |≤c}

∣∣p < ∞ for every p > 0. In addition,

E (|Sf |p) < ∞ ⇐⇒ E
(
(Sf2)p/2

)
< ∞.

Further, by Baire’s category argument, there exist positive constants cp, Cp such that
for every f ,

cp

∥∥∥f(Sf2)1/2
∥∥∥
p
≤ ∥Sf∥p ≤ Cp

∥∥∥(Sf2)1/2
∥∥∥
p
. (12)

Proof. The first claim stems from the exponential moment E exp
{
θSf1I|f |≤c

}
that

exists when |θ| < 1/c.

In general, ∥X −X ′∥p ≤ 2∥X∥p for a random variable X and its independent copy
X ′. On the other hand, if E|X −X ′|p < ∞ then by Fubini’s theorem E|X − x′|p < ∞
for some number x′. That is, ∥X∥p ≤ ∥X − x′∥p + |x′|.

Consequently, the moments E|Sf |p and E|S̃f |p exist simultaneously (in contrast
to the mere existence of the integrals). Therefore, we may employ the compounded
series (3) with the symmetric i.i.d. Rademacher random variables (i.e., with the sym-
metric (±1)-Bernoulli distribution and in virtue of Fubini’s theorem focus just on the
Rademacher series. All their moments are comparable, in particular, to the second mo-
ment. Translating this back to the language of Gamma integrals, the second statement
has been proved.

Finally, the category argument is valid since we deal with at least F-spaces (p < 1)
if not Banach spaces (p ≥ 1).

The following well known formula, e.g., [11, (2.4.1) and (2.4.4)], needs just a little
adaptation to our context. Still, a direct derivation shows how the symmetric and

11
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skew parts interfere and complete each other.

Lemma 2.3.2. Let p ∈ N. If the integrals mℓ = λf ℓ exist for ℓ = 1, ..., n then the pth

moment

αp := E (|Sf |p) = p!

p∑
k=1

∑
j

1

j !

p−k+1∏
ℓ=1

(mℓ

ℓ

)jℓ
, (13)

with the integer vector indexes j = (j1, . . . , jp−k+1), j ! := j1! · · · jp−k+1! and subject to
the constraints

n−k+1∑
ℓ=1

jℓ = k and

n−k+1∑
ℓ=1

ℓjℓ = p. (14)

Proof. As usual, αp := E(Sf)p = ı−p F (p), where F (θ) = EeıθX = eψ(θ) and ψ(θ) =
−1

2λ ln(1 + f2θ2) + ı λ arctan(fθ).

The first derivative involves a single complex valued function

ψ′(θ) = λf(c(fθ)) with F ′(0) = ψ′(0) = ı λf (15)

because

ψ′(θ) = −λ
f2θ

1 + f2θ2
+ ıλ

f

1 + f2θ2
= λf

(
− a(fθ) + ıb(fθ)

)
,

yielding c = −a+ ıb with

b(θ) =
1

1 + θ2
and a(θ) = θ a(θ).

Therefore, for ℓ = 1, ..., p, we have ıℓ+1 c(ℓ)(0) = (−1)ℓ+1ℓ! because

b(ℓ)(0) =

{
(−1)mℓ!, if p = 2m,
0, if ℓ = 2m+ 1.

a(p)(0) =

{
0, if ℓ = 2m,
(−1)ℓ!, if ℓ = 2ℓ+ 1.

Hence, and from (15) we infer by the Chain Rule that

xℓ := ψ(ℓ)(0) = (−1)ℓ
(ℓ− 1)!

ıℓ
mℓ, ℓ = 1, ..., p. (16)

Using Bell’s polynomials Bp,k, 1 ≤ k ≤ p,

Bp,k(x1, . . . , xp−k+1) = n!
∑
j

1

j !

p−k+1∏
ℓ=1

(xℓ
ℓ!

)jℓ

12
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that appear in Faà di Bruno’s formula

F (p) = F

p∑
k=1

Bp,k

(
ψ′, ψ′′, ..., ψ(p−k+1)

)

with quantities (16), we obtain(13).

Corollary 2.3.2.1. If p ∈ N and f ≥ 0, denoting µ∗
p = max

1≤ℓ≤p
∥f∥ℓ,

µ∗
p ≤ ∥Sf∥p ≤ (p!)1/p µ∗

p. (17)

Indeed, the right constant follows from the p-homogeneity of the Bernoulli polyno-
mials. After µ∗

p is factored out, the remaining quantity is just the pth moment of an
exponential S1, or p!.

On the other hand, for each integer q ≤ p, dropping all terms except one for k = 1,
the restriction holds only for jq = 1 and jl = 0 for ℓ ̸= q. So,

αq ≥ q!
mq

q
= (q − 1)!mk.

That is, ∥Sf∥p ≥ max
q≤p

(
((q − 1)!)1/q∥f∥q

)
≥ µ∗

p.

Proof of Theorem 2.3. By Lemma 2.3.1 we may confine to f ≥ 0 with λ supp f =
c < ∞, so µ∗

p ∼ ∥f∥p. Hence, for an integer p, Corollary 2.3.2.1 provides the sought-
for isomorphism of both Lp spaces. For a non-integer p we apply the Riesz-Thorin
interpolation theorem, so the isomorphism holds for every p ≥ 1.

Let p < 1. We choose a positive p-stable random variable S, normalized to secure
the identity Ee−θS = e−θp

>, θ ≥ 0, and independent of the Gamma process St. Then,
by Fubini’s Theorem,

L(θ) = Ee−θ(Sf)p = Ee−sθ1/pS Sf = E exp

{
−
∫

T
ln
(
1 + s1/pS f

)}
= EM.

where the random variableM = M(S, θ) ≤ 1. We compute and estimate the derivative:

−L′(θ) =
1

pθ
E
[
M(S, θ)λ

θ1/pSf

1 + θ1/pSf

]
≤ 1

pθ
E
[
λ

θ1/pSf

1 + θ1/pSf

]
.

Since u
1+u ≤ 1 − e−u, u ≥ 0, therefore by Fubini’s Theorem and then, using the

inequality 1− e−u ≤ u, u ≥ 0, we continue:

−L′(θ) ≤ 1

pθ
λE

[
1− e−θ1/pSf

]
=

1

pθ
λ
[
1− e−θfp

]
≤ 1

p
λfp

Letting θ → 0, we obtain the estimate

E(Sf)p ≤ λfp

p
.

13
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Since λ supp f = c < ∞, then by stationarity we may assume that supp f = [0, c]. So,
by Fubini’s Theorem and Jensen’s inequality on a (randomized) probability space

E(Sf)p = E
(∫ c

0
f dS

)p

= ESp
c

(∫ c

0
f
dS

Sc

)p

≥ ESp−1
c

∫ c

0
fp dS

The latter expectation is equal to

E
(
E
[
Sp−1
c λcf

p dS
∣∣∣Sc

] )
=

1

c
ESp

cλcf
p =

Γ(p+ c)

cΓ(c)
λfp

in virtue of Lemma 2.1.1.

Remark 2.3.1 (Discussion of constants).

(1) Let λ supp f = 1. Then µ∗
p = ∥f∥p. If f ≥ 0, then the left constant in (17) can

be improved to ((p− 1)!)1/p.

Indeed, the inequality in the last line of the Corollary’s proof now involves the max-
imum of the product of two increasing sequences, hence the maximum is attained
at the product of the maxima.

Further, these are the best constants. The right one is attained for f = 1IT wit
λT = 1. In regard to the lower bound, there is a sequence of functions fj such that
λfn

k → 1 but λf ℓ
k → 0 for ℓ < n. For example, simplifying the context to L = R+.

fk(x) =
1

x1/n ln1/n(k)
,

1

k
≤ x ≤ 1.

(2) Still with λ supp f = 1, an even power p, and f admitting negative values but
with λf = 0, the constants obtained above stay.

The upper bound relies just on the triangle inequality. For the lower bound, with
m1 = 0 and even p, formula (13) contains only even powers of odd moments,
due to the second constraint. Thus, all summands are nonnegative, validating the
“dropping argument” in the proof of Corollary 2.3.2.1.

(3) Odd p and f with possible negative values face a classical obstacle. We found no
decent hard estimates.

(4) Let f ≥ 0 with a support of positive finite measure λT = c or, equivalently, let
S have intensity c. Then ∥Sf∥p ≈ p

e∥f∥p, or more precisely,

Γ(c+ p− 1)

Γ(c)
λfp ≤ E (Sfp) ≤ Γ(c+ p)

Γ(c)
λfp, (18)

with the best constants.

By rescaling λ → cλ results in the replacement mℓ → cmℓ in the moment formula
(13), which is tantamount to the change of intensity 1 → c, or to the new T = cTc

14
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where λTc = 1. Again, if mp ≤ 1 then mℓ ≤ mp ≤ 1, so

E ((Sf)p) = p!

p∑
k=1

ck
∑
j

1

j !

p−k+1∏
ℓ=1

(mℓ

ℓ

)jℓ

= n!

p∑
k=1

ck
∑
j

1

j !

p−k+1∏
ℓ=1

1

ℓjℓ
= E ((S1ITc

)p) =
Γ(p+ c)

Γ(c)
.

In particular, the pth moment of the Γ(c, 1) distribution yields (18). Stirling’s for-
mula ensures the equivalence of the pth norms.

2.3. Simulation

2.3.1. By partitions

A common approach goes back to Wiener’s concept [20] of a stochastic integral
Xf :=

∫
f dX on R+ that mimics approximation by step functions, constant between

partition points {0 = u0 < u1 < · · · < un−1 < un = 1} of, say, [0, 1]:

g =

n∑
j=1

aj1I(uj−1,uj ] yielding Xg :=

n∑
j=1

aj

(
Xuj

−Xuj−1

)
.

Typically, the values at the left end points are used, e.g., aj = f(uj−1), but not neces-
sarily (see (19) below). For a second order process X, the variance Var(Xg −Xg′) =
∥g − g′∥22 yields Xf by completion. Consequently, the goodness of approximation can
be measured by the variance

εn = Var(Xf −Xg) = ∥f − g∥22 =
n∑

j=1

∫ uj

uj−1

|f(t)− f (uj−1)|2 dt.

The best least squares approximation of f ∈ L2[0, 1] by a function with finitely many
values that span a finite field T is given by the conditional expectation, a.k.a. projec-
tion onto L2(T ),

E
∣∣f − E[f |T ]

∣∣2 = inf
g∈L2(T )

E|f − g|2.

In this case the step function g = E[f |T ] possesses the values

aj =
1

uj − uj−1

∫ uj

uj−1

f(x) dx. (19)

For a Lévy process, in virtue of its stationarity one may consider a monotonic rear-
rangement of f , i.e., w.l.o.g. one may assume that f is monotonic. Then aj is contained
between the values at the end points. A uniform partition uj = j/n is most convenient
for a Lévy process since the increments are i.i.d. random variables.

A pure jump Lévy process exhibits its own regime of jumps, contradicting the
simulation by the above method which places incorrect jumps at wrong positions in
an artificial manner: true jumps are not Gamma variables and occur elsewhere. Still,

15



46 Asian Journal of Statistics and ApplicationsAsian Journal of Statistics and Applications SZULGA, Jerzy

such discrepancy is beyond detection of a naked human eye when the resolution is
high enough. We only have a “soft” qualitative confirmation: for a nonnegative f ∈ L2

and step functions, described above, Sfk → Sf a.s. and in L2. At the same time, the
question about the quantitative error εn seems to have rather elusive answers.

Indeed, when the given f itself resembles a step function, the error can be arbitrarily
small, even 0 eventually. Yet, for a typical “orderly” function such as a power xp with
p > 0 or the exponential ecx the nullity is of order O(n−2), rather weak. To wit, if

f ∈ C1[0, 1] with f ′ ∈ L2[0, 1], using suitable intermediate points ξj ∈
(
j−1
n , j

n

]
,

εn =
1

n3

n∑
j=1

∣∣f ′ (ξj)
∣∣2 ≈ ∥f ′∥22

n2
.

Further, on the edge of square integrability the order of nullity may worsen signifi-
cantly. For example, for f(x) = x−p, where 2p > 1, the error εn ∼ n2p−1.

2.3.2. By H-series

In contrast, the truncation
N
St of series (6) to the finite sum for n ≤ N yields the

easily controllable remainder RN = (S −
N
St)f , subject to moment assumptions. The

assumption below reduces to f ∈ Lp for any p > 0 if f has a support of finite measure.

Remark 2.1. The more slowly series (5) converges, the better (faster) the approxi-
mation. In other words, the more closely the distribution of chosen U on the half line
resembles the uniform distribution, the better simulation. So, Pareto U with the den-
sity (p+ 1)x−p1Ix≥1, where p > 1 just barely, is more efficient than an exponential U
with the density e−x.

Theorem 2.4. As N → ∞, RN → 0 a.s. Further, for an even integer p, if a nonneg-
ative f ∈ Lq for q = 1, ..., p and Mp = max

q
λf q then

ERp
N ≤ CpMp

(p+ 1)N
,

for some constant Cp > 0, i.e., the Lp-error tends to 0 geometrically.

Proof. The a.s. convergence is obvious. Then, for Poisson arrivals (S′
n) that are inde-

pendent of (Sn), we have

RN
D
=

∑
n

H(S′
N + Sn)f(Un).

Next, we note the inequality, clearly true for x = 0:

H(x+ y) ≤ e−xH(y). (20)

Indeed, let x > 0 and put u = H(y), i.e., y = E1(u), and also c = e−x < 1. The
inequality is equivalent to

− ln c ≥ E1(cu)− E1(u)

16
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The u-function on the right is decreasing hence its limit at 0 becomes the supremum.
Based on the representation (cf. [1, 5.1.11])

E1(u) = −γ − ln(u)−
∞∑
k=1

(−1)k

k k!
uk

where γ is the Euler constant, that limit equals − ln c, thus proving (20).

Hence, by Fubini’s Theorem,

ERp
N ≤ Ee−pSN ESpf,

establishing the estimate in virtue of the upper bound in Theorem 2.3.

Remark 2.4.1.

(1) In general, inequality (20) may have no useful analog.

E.g., it fails for an α-stable process. Nevertheless, there may exist N (and it does in the
case of a stable process) such that H(Sn) is integrable for n > N , so the remainder
ERN → 0.

(2) Still, possibly, none of H(Sn) may belong to any Lp, p > 0.

For example, the Lévy density ≈ exp
{
− ln1/q(x)

}
, q < 1, at ∞ yields H(x) ≈

exp {(lnq(1/x)} near 0.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

3.5

displayed:
- a few paths with marked jumps
- the average (bold, 100 paths)

converging to the standard clock

In the above simulation we use a sufficient cut-off of the series. In old days, the inversion
of the exponential integral function was quite challenging (cf., e.g., [13]). While the modern
software such as Matlab provides the “expint” function, we found no built-in efficient
inverse. However, a down-to-earth “halve-and-check” algorithm works surprisingly fast,
being as accurate as desired. Note that in the cut-off jumps points are order statistics and

17
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jump heights are not Gamma variables.

2.4. Linear trend

An added deterministic trend Yt = Xt + bt of bounded variation that ensures the
infinite divisibility has an impact on the integrands, even for a general Lévy process.
The mere existence in L0 of the integral Y f implies the existence of δf =

∫
T f db, cf.

[9, Th. 8.3.1] with a quite formidable proof. In contrast, in our case the argument is
rather simple. Indeed, for f ≥ 0 the imaginary part yields the modular space Lϕ0∩Ldb,
in particular securing the existence of the integral λf .

Remark 2.2.

(1) Consider a trend-free X.

(a) If β = 0 then the analog of Theorem 2.3 for S̃f holds for f ∈ Lϕ2 (not
necessarily positive) with condition (a) in (11) replaced by the condition
“ (ã) λf21I{|f |≤c} < ∞”.

Indeed, for every p > 0 by Khinchin’s inequality,

cp||(Sf2)1/2||p ≤ ||S̃f ||p ≤ Cp||(Sf2)1/2||p, (21)

for some constants cp, Cp, independent of f .

(b) Let β ̸= 0 and f ∈ Lϕ1. Then Xf and f are simultaneously p integrable for
every p > 0.

Indeed, let Xf exist. Then f ∈ Lϕ0 , which implies condition (a) of (11) of The-
orem 2.3 (stronger than (ã) above). The equivalence follows from the previous
statement.

(2) Consider a nontrivial trend bt.
(a) For a linear trend bt = δt, the p-integrability occurs simultaneously for Y f ,

Xf , Sf , and f .

Indeed, repeat the above argument.

(b) A general trend bt with bounded variation entails the space L1(db) which in-
terferes in various ways with the underlying modular spaces Lϕ1 , Lϕ2 , and Lϕ0

through condition (a). We omit the discussion.

3. Gamma martingale fields

A Lévy process Xt entails the exponential (pathwise for a PJP, cf. Appendix A.2):

EκXt := at(κ)e
−κXt , (22)

where at(κ) = etψ(κ) and ψ(κ) = − lnEe−κX1 . Besides the self-explanatory algebraic
form, independent Xt and Yt satisfy the identity

EκXt · EκYt
D
= Eκ(Xt + Yt)

18
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(with possible versions that satisfy the equality pointwise on a product probability
space). Subject to the integrability assumption, hopefully beyond the trivial κ = 0,
the exponential becomes tautologically a unit mean positive martingale (or rather a
martingale field) w.r.t. the natural filtration Gt. For the Gamma process:

Mt(κ) = EκSt where at(κ) = (1 + κ)t and κ > −1;

Mt(κ) = Eκ St where at = (1− κ2)t/2 and |κ| < 1.

With a linear trend, Eκ(Xt−δt) is a martingale with a(t) = exp {tψ(θ) + δt} iff ψ(κ) =
δκ. Therefore, for the actual martingale St = St − t the corresponding exponential
martingale reduces trivially to the constant 1. In contrast, the shifted S−δt admits the

value c = κ(δ) for which exp

−c(St − δt)


is a martingale (solving the corresponding

equation, e.g., for δ = 1, c = 0.714556... satisfies c = ln(1− c2)).

The p-moments are of the form ctp, with the base cp > 1 for p > 1:

cp = cp,κ =





(1 + κ)p

1 + pκ
, if pκ > −1 for M,


(1− κ2)p

1− p2κ2

1/2

, if |pκ| < 1 for M.

They are not uniformly bounded with the exception of p = 1 which nevertheless entails
an a.s. limit as t → ∞ by Doob’s Convergence Theorem. However, these limits are 0
a.s. for κ ̸= 0. Indeed, e.g., denote Xκ = limt→∞Mt(κ). Also, by the SLLN St/t → 1
a.s.. Denoting the event of convergence by Aκ, we arrive at a contradiction:

(1 + κ)e−κ = lim
t→∞

M
1/t
t (κ) = 1 on Aκ ∩ {Xκ > 0}, (23)

so P(Xκ > 0) = 0; similarly for Mt with the SLLN St/t → 0.

Quadratic variations

The quadratic variation [M ] contains nothing stochastic, just jumps. That is, inter-
preting Notes A.1 and A.2, putting y = φ(x), with xt = St and φ(x) = e−κx, y = φ(x)
and a(t) = (1 + κ)t:

de−κSt− = −κ−κSt− dSt.

d

e−κS


t

= κ2e−2κSt− d[S]t;

dMt = −κ(1 + κ)te−κSt− dSt + ln(1 + κ)(1 + κ)t e−κSt−dt,
= −κMt− dSt + ln(1 + κ)dMt−dt, (∗)

d[M ]t = (1 + κ)2t κ2e−2κSt− d[S]t = κ2M2
t− d[S]t.

(24)

The compensator of M2, a.k.a. the oblique bracket ⟨M⟩, stems from elementary
stochastic calculus. Let t > s.

E[M2
t |Gs] = (1 + κ)2tEe−2κSt−s e−2κSs =

(1 + κ)2t

(1 + 2κ)t−s
.

19
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Hence

E[M2
t −M2

s |Gs] =

([
(1 + κ)2

1 + 2κ

]t
−
[
(1 + κ)2

1 + 2κ

]s)
M2

s

Denoting the base by bκ =
(1 + κ)2

1 + 2κ
for the sake of brevity, we obtain

d⟨M,M⟩t = (ln bκ) b
t
κMt− dt

Induced fields

Continuous linear operators w.r.t. to the variable κ preserve the martingale property
subject to suitable integrability conditions.

Example 1. Partial derivatives ∂n

∂κn .

ConsiderM(κ) = a(κ)e−bκ with a ∈ C∞, and b = St or b = S̃t. By standard calculus

M (n+1) = e−bκ
n∑

j=0

(−1)n−j

(
n

j

)
a(j)bn−j .

The failing factorial simplifies the notation,

(a)j :=
Γ(a+ 1)

Γ(a+ 1− j)
(when j ≥ 1, it’s a(a− 1) · · · (a− j + 1)︸ ︷︷ ︸

j

),

entailing the binomial coefficient
(
a
j

)
=

(aj)

j!
. The case of St is easy:

M
(n)
t = Mt

n∑
j=0

(−1)j
(
n

j

)
(t)n−j(1 + κ)−n+jSn−j

t .

For S̃t, the formula is similar but the coefficients are way more cumbersome. However,
for a(κ) = (1− κ2)t/2, using the binomial Taylor series,

a(j)(0) =

{
0, if j = 2m− 1,

(−1)m
(
t/2
m

)
(2m)!, if j = 2m.

.
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Plugging in also κ = 0 in the former expansion, we obtain polynomial martingales:

Pn(St) := (−1)nM
(n)
t (0) =

n∑
j=0

(−1)j
(
n

j

)
(t)jS

n−j
t ,

P1(t) = St − t,
P2(t) = S2

t − 2tSt + (t)2,
P3(t) = S3

t − 3tS2
t + 3(t)2St − (t)3,

P4(t) = S4
t − 4tS3

t + 6(t)2S
2
t − 4(t)3St + (t)4, ...

P̃n(St) := (−1)nM̃
(n)
t (0) =

∑
2j≤n

(−1)j
(
n

2j

)(
t/2

j

)
(2j)! S̃n−2j

t ,

P̃1(t) = S̃t,

P̃2(t) = S̃2
t − t,

P̃3(t) = S̃3
t − 3t S̃t,

P̃4(t) = S̃4
t − 4tS̃2

t + 6t(t− 2), ...

Example 2. The Laplace transform of the function κ → Mt(κ). First,

Lt(θ) =
Γ(t+ 1) eSt

(St + θ)t+1
with ELt(θ) =

1

θ
;

then, through differentiation w.r.t. θ,

(−1)k−1 L
(k−1)
t (θ) =

Γ(t+ k) eSt

(St + θ)t+k
with the mean

(k − 1)!

θk
, k ∈ N.

These martingales are not p-integrable for p > 1 but converge a.s. to 0. The argument
is similar to one used in (23); i.e., by applying the exponent 1/(t+ k), then SLLN and
the Stirling’s formula.

The case of S̃t seems very cumbersome since the Laplace transform of (1 −
κ2)t/2, |κ| ≤ 1 does not express in terms of standard functions. However, we may
conceal the difficulty using Fubini’s theorem:

Ẽξ := EκS̃t = E′e−κ(S̃t−S̃′
t),

where the prime indicates an independent copy. Thus, the transform L̃(θ) =∫ 1

−1
Ẽξe

−θκ dκ evaluated at θ = 0 yields a martingale

L̃t = 2E′

[
sinh(S̃t − S̃′

t)

S̃t − S̃′
t

]
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Appendix A. Appendix

A.1. Modular spaces

We intend to describe the vector space of Poisson-integrable functions in terms of
topological vector spaces but desirably as F-spaces (cf. [17]). In particular, the modular
spaces (introduced in [12]) become an essential tool in study of stochastic processes
with independent increments, often quite elaborate in such generality, cf., e.g., [9].
This review befits diffusion-free or even trend-free Lévy processes and thus benefits
from their stationarity and simplified structure.

Let (T, T , τ) be a σ-finite measure space entailing the F-space L0(T) of measurable
real functions, equipped with a metrizable topology of local convergence in measure.
Consider the class M of functions ϕ : [0,∞) → [0,∞), ϕ ̸= 0, ϕ(0) = 0 that are

(1) (a) nondecreasing and (b) continuous at 0;
(2) satisfying the inequality

ϕ(αu+ (1− α)v) ≤ ϕ(u) + ϕ(v), α ∈ [0, 1]. (A.1.1)

Then the integral

Φ(f) =

∫

T
ϕ(|f |) dτ (A.1.2)

is a leading example of a modular on a metrizable modular space (a.k.a. Musielak-
Orlicz or generalized Orlicz space):

Lϕ(T) =
{
f ∈ L0(T) : Φ(f/c) < ∞ for every c > 0

}
, (A.1.3)

which becomes an F-space under the F-norm

||f ||ϕ = inf {c > 0 : Φ(f/c) ≤ c} . (A.1.4)

The completeness of the modular spaces (A.1.3) follows from the continuity of the
embedding Lϕ(T ) → L0(T ) for any set T ∈ L of finite measure. Members of M are
modulars, too (τ = δ1, L

ϕ(T) = R).

A concave ϕ is subadditive; then the modular Φ(f) itself is an F-norm. The modifica-

tion of a concave ϕ → ϕ̃(u) := ϕ(u2) preserves (A.1.1) but may destroy subadditivity,
so the resulting modular may fail the triangle inequality yet keep a valid F-norm

(A.1.4). We simply write L̃ϕ := Lϕ̃.

Two functions are deemed equivalent, ϕ1 ∼ ϕ2, if for i, j ∈ {1, 2}

∃ a, b : 0 < b ≤ a ∀ u ≥ 0 aϕi(bu) ≤ ϕj(u). (A.1.5)

Then Lϕ1 = Lϕ2 as vector spaces. If ϕ1 is not a modular but ϕ2 is, then Lϕ1 is
metrizable with the help of the metric ∥f∥ϕ2

in spite of the functional ∥f∥ϕ1
failing to

be a metric. That is, ∥f∥ϕi
< ϵ implies ∥f∥ϕj

< ϵ/b

If one is a modular, we may call the other a modular (or a quasi-modular), too.
Then the same symbol is kept (with some abuse of notation); e.g., ϕ0(u) denotes either
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of the following modulars:

u ∧ 1 ∼ u

u+ 1
∼ 1− e−u ∼ arctan(u), etc. (A.1.6)

(or additional ones possibly failing monotonicity or (A.1.1)).

A one-sided Lévy measure ν on R+ yields a perfect modular

ϕν(u) =

∫

R+

(1− eux) ν(dx) ∼
∫

R+

ϕ0(ux) ν(dx).

The need for extension of the concept of modulars is illustrated by troublesome but
challenging functions:

u →
∫

R+

(1− cos(ux)) ν(dx),

∣∣∣∣
∫

R+

sin(ux) ν(dx)

∣∣∣∣ . (A.1.7)

The latter function is dominated by the modular ϕν(u) =
∫
R+(ux∧ 1) ν(dx) and the

former one by ϕ̃ν . However, their modularity, even up the equivalence, is uncertain
unless ν is special. E.g., for a α stable subordinator both functions are equivalent to
uα. For a Gamma process we obtain

ϕ1(x) := ln(1 + x),

ϕ2(x) := 1
2 ln(1 + x2) ∼ ϕ̃1.

(A.1.8)

Similarly, the function ϕ(u) =
∣∣E(Ku : |Ku| ≤ 1

)∣∣, although not being itself a modular

in general but, when combined with the modular E
(
|xK|2 ∧ 1

)
may become one,

subject to additional properties of the distribution κ, e.g., uδ for K with regularly
varying tails with a parameter δ, cf. [5].

For general processes with independent increments the integrability in terms of
topological vector space becomes quite convoluted (cf. [9, 0.7-0.9]).
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A.2. Calculus of jumps

We consider pure jump processes (PJP), mainly deterministic and only later suitably
randomized as needed. We write values of a function as f(t) or ft as convenient.

A.2.1. Basic modifications of functions

Consider a countable set U = {uk : k ≥ 0} ⊂ [0,∞) with u0 = 0. The ascending
rearrangement of a finite subset {u1, ..., un} is denoted by u∗n = (u∗1, ..., u

∗
n) which

defines the associated permutation σ1, · · · , σn of indices: uσk
= u∗k. U entails the

counting measure n =


n δun
:

nA = |A ∩ U | =

n

1IA(un), n(t) = n[0, t] (may be ∞ for all t),

nf :=

 ∞

0
f(s)n(ds) =


n

f(un), ntf = nf1I[0,t].

We consider jumps hn with h0 = 0 that may takes values in an F-space, e.g., in a
modular space of random variables. Under the mode of convergence, consider

the standing assumption: jumps are summable;

with a routine proof :




1.Order linearly a finite U0 ⊂ U ;
2.Use some discrete identity;
3.Finish by approximation.




(A.2.1)

Recall that a sequence hn is summable if the net of finite sums


n∈N hn converges
w.r.t. the natural partial order of inclusion. An F-space enjoys several equivalent con-
ditions, studied as early as in 1930s by Orlicz (cf. [18, Th. 1.3] and references therein).
In particular, the summability is equivalent to the permutation-invariant convergence
and to the bounded convergence (i.e., with arbitrary bounded scalar multipliers). How-
ever, such conditions may fail to be equivalent with respect to a non-metric convergence
such as the a.s. convergence (cf. [18, Sect.5.3] and references therein).

A right continuous amassing1 function and integrals stem from compounding:

xA :=

n

hn1IA(un), hence xt =

n

hn1I{un≤t} and

xf =

 ∞

0
f(s)x(ds) =


n

hnf(un); .
(A.2.2)

Remark A.1. In general, random jumps should be viewed as vectors in L0 or another
modular space of random variables. In other words, the associated measure is a vector
measure rather than a mapping from the underlying probability space into the space of
real (possibly signed) measures. Therefore, a purist may refuse to name the associated
jump process “pure” with a possible exception of positive random jumps.

By the aforementioned Orlicz Summation Theorem, the integral is well defined
for bounded real functions f which entails the question of the maximal structure of

1a.k.a. “the cumulative function” when uk are increasing
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integrable functions. Compounding yields a new PJP yt := xtf = xf1I[0,t] stemming
from xt as xt stems from nt).

We may display our quantities either as sums or as Lebesgue integrals with respect
to the discrete measure x, like in (A.2.2). For lcrl functions f we may convey Riemann-

Stieltjes integrals
∫ t
0 fs− dxs, then we may write concisely dyt = ft− dxt.

The old jumps:

∆xt := xt − xt− =

{
hn, if t = un,
0, if t /∈ U . . (A.2.3)

produce new jumps by further compounding or compositions:

(x ◦ k)t :=
∑
n

knhn1I{un≤t}

=: [x, y]t , where yt =
∑
n

kn1I{un≤t};

[x]φt :=
∑
n

φ(hn)1I{un≤t} = lim
πt

∑
k

φ(xtk − xtk−1
),

(A.2.4)

where πt = {tk} are partially ordered partitions of [0, t] with mesh → 0 (having chosen
a finite U0 ⊂ U ∩ [0, t], we may take πt ⊃ U0). Clearly, the products knhn must be first
well defined and must form a summable sequence.

The distinction between the operations is as valid as the distinction between the
verbs “compound” and “compose”. Essentially, operations entail each other; the first
operation by repetition yields [x](m), where φ(x) = |x|m; then entails the variation [x]φ

at least when φ is analytic. Conversely, the quadratic variation [x](2) with φ(x) = x2

produces [x, y] = ([x+ y](2) − [x− y](2))/4 by polarization. To distinguish [x] from the
absolute variation, we may denote the latter by ∥x∥ := [x](1) if necessary.

The change of the order of operations, i.e., φ after the sum, may complicate a
presentation of jumps and force the integral display. On the other hand, a classical
integral representation may not exist; nevertheless, we can still use a symbolic differ-
ential notation. For example, consider φ(x) = x2:

[x]t =
∑
n

h2n1I{un≤t} or d[x]t = ∆2xt = ∆xt dxt,

x2t =
∑
m

∑
n

hmhn1I{Un∨Um≤t} or dx2t = ∆x2t dnt

= 2xt− dxt + [x]t

(A.2.5)

In general, one may expect a rather complicated presentation of jumps (e.g,, for the
power φ(x) = |x|mt cf. [18, Sect. 9.2.3]).

Note A.1. For the composition y = φ ◦ x with φ ∈ C1:

φ(xt) = φ(h0) +

∫ t

0

(
φ(xs)− φ(xs−)

)
dxs, or

dφ(x)t = φ′(xt−) dxt, also
d[φ(x)]t = |φ′(t)|2 d[x]t

(A.2.6)
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Proof. We use of the telescoping sum φn = φ0 +

n∑
k=1

(φk − φk−1) for the integral

formula, and then use the symbolic differential display.

The product atyt of a non-PJP function at and a PJP yt is no longer PJP.

Note A.2. For a function a ∈ C1,

d(atyt) = at dyt + a′t yt−dt,

d[ay]t = a2t d[y]t.

Proof. Use the standard decomposition of increments and of increments of squares.
In the latter case, only the sum with the first term doesn’t vanish in the limit:

|atyt − asys|2 = a2t (yt − ys)
2 + y2s(at − as)

2 + 2atys(at − as)(yt − ys).

A.2.2. Inverse

A rcll PJP xt is nondecreasing when hn ≥ 0 and thus yields the rcll inverse

xv = x−1(v) := inf {v : xt > v} (A.2.7)

Since the infimum is attained due to the right continuity, then

{xv > t} = {xt ≤ v} , or equivalently, {xv ≤ t} = {xt > v} .

Hence the inverse is an involution on the rcll class: (x−1)−1 = x. Similarly, the lcrl
inverse x(t−) = sup {t : xt < v} is an involution on the lcrl class.

t

a

x1

u1 u2

x2

u3

x3

u4

x4
a

t

u1

x1

u2

u3

x2

u4

x3 x4

rcll inverse

hk > 0 anduk ↗
xk = h1 + · · ·+ hk, k = 1, ..., n

Note A.3. If {hn} is summable and U is dense then the inverse is continuous.

Indeed, w.l.o.g. we consider [0, 1]. We truncate the sum for xt at the N th term and
sort (u1, . . . , uN ) → (u∗1, . . . , u

∗
n) in the ascending manner, adding u∗0 = 0. That is,

with the corresponding permutation σ of indices,

N
xt =

N∑
n=1

hn1I{un≤t} =

N∑
n=1

hσ(n) 1I{u∗
n≤t},
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Then, denoting gn =

n∑
k=1

hσ(k) and accumulating terms, for the inverse

N
xt(v) =

N∑
n=1

(u∗n − u∗n−1)1I{gn≤v},

the increments
N
xt − N

xv−
≤ mesh(u∗n) → 0. Hence ∆xv = 0.
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cesses, Prob. Th. Rel. fields, 83, 101-134, 1989.
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